Опознать по маркировке. SMD компоненты

Были схемы на дискретных электронных элементах - резисторах, транзисторах, конденсаторах, диодах, индуктивностях, и они при работе нагревались. И их еще приходилось охлаждать - целая система вентиляции и охлаждения строилась. Нигде не было кондиционеров, люди жару терпели, а все машинные залы продувались и охлаждались централизованно и непрерывно, днями и ночами. И расход энергии шел на мегаватты. Блок питания компьютера занимал отдельный шкаф. 380 вольт, три фазы, подводка снизу, из-под фальшпола. Другой шкаф занимал процессор. Еще один - оперативная память на магнитных сердечниках. А все вместе занимало зал площадью около 100 квадратных метров. И машина имела оперативную память, страшно сказать, 512 КБ.

А надо было делать компьютеры все мощнее и мощнее.

Потом изобрели БИС - большие интегральные схемы. Это когда вся схема прорисована в одной твердотельной форме. Многослойный параллелепипед, в котором слои микроскопической толщины содержат нариcованные, напыленные или наплавленные в вакууме те же самые электронные элементы, только микроскопические, и «раздавленные» в плоскость. Обычно целая БИС герметизируется в одном корпусе, и тогда уж ничего не боится - железяка железякой, хоть молотком бей (шутка).

Только БИС (или СБИС - сверхбольшие интегральные схемы) содержат функциональные блоки или отдельные электронные устройства - процессоры, регистры, блоки полупроводниковой памяти, контроллеры, операционные усилители. И стоит задача их собрать уже в конкретное изделие: мобильный телефон, флешку, компьютер, навигатор и пр. Но они же такие маленькие, эти БОЛЬШИЕ интегральные схемы, как их собрать?

И тогда придумали технологию поверхностного монтажа.

Метод сборки комплексных электронных схем SMT/ТМП

Собирать на плату вперемешку микросхемы, БИСы, сопротивления, конденсаторы по старинке очень скоро стало неудобно и нетехнологично. И монтаж по традиционной «сквозной» технологии стал громоздким и трудно автоматизируемым, и результаты получались не в согласии с реалиями времени. Миниатюрные гаджеты требуют и миниатюрных, и, самое главное, удобных в компоновке плат. Промышленность уже может выпускать сопротивления, транзисторы и пр. совсем маленькими и совсем плоскими. Дело оставалось за малым - сделать плоскими, прижатыми к поверхность их контакты. И разработать технологию трассировки и изготовления плат как основы для поверхностного монтажа, а также методы пайки элементов к поверхности. Кроме прочих плюсов, пайку научились делать целиком - всю плату сразу, что ускоряет работу и дает однородность ее качества. Этот метод получил название «т ехнология м онтажа на п оверхность (ТМП)», или surface mount technology (SMT). Так как монтируемые элементы стали уж совсем плоскими, в обиходе они получили название «чипы», или «чип-компоненты» (или еще SMD - surface mounted device, например, SMD-резисторы).

Шаги изготовления платы по ТМП

Изготовление ТМП-платы затрагивает как процесс ее проектирования, изготовления, подбор определенных материалов, так и специфические технические средства для припаивания чипов на плату.

  1. Проектирование и изготовление платы - основа для монтажа. Вместо отверстий для сквозного монтажа делаются контактные площадки для припаивания плоских контактов элементов.
  2. Нанесение паяльной пасты на площадки. Это можно делать шприцем вручную или с помощью трафаретной печати при массовом изготовлении.
  3. Точная установка компонентов на плату поверх нанесенной паяльной пасты.
  4. Помещение платы со всеми компонентами в печь для пайки. Паста оплавляется и очень компактно (благодаря присадкам, увеличивающим поверхностное натяжение припоя) припаивает контакты с одинаковым качеством по всей поверхности платы. Однако критичны требования как ко времени операции, температуре, так и к точности химического состава материалов.
  5. Окончательная обработка: остывание, мойка, нанесение защитного слоя.

Различаются варианты технологии для серийного и для ручного производства. Массовое производство при условии широкой автоматизации и последующем контроле качества дает и гарантировано высокие результаты.

Однако SMT-технология может вполне уживаться и с традиционным монтажом на одной плате. В этом случае как раз и может быть востребован монтаж SMT вручную.

Резисторы SMD

Резистор - самый распространенный компонент электронных схем. Существует даже специально разработанная схемотехника, которая строится только из транзисторов и резисторов (T-R-логика). Это значит, без остальных элементов построить процессор можно, а вот без этих двух - никак. (Пардон, есть еще ТТ-логика, где вообще одни транзисторы, но некоторым из них приходится играть роль резисторов). Это в производстве больших интегральных схем доходят до таких крайностей, а для поверхностного монтажа все-таки выпускается весь набор необходимых элементов.

Для столь компактной сборки они должны обладать строго определенными размерами. Каждый SMD-прибор - это маленький параллелепипед с выступающими из него контактами - ножками, или пластинками, или металлическими наконечниками с двух сторон. Важно то, что контакты на монтажной стороне должны лежать строго в плоскости, и на этой плоскости иметь необходимую для пайки площадь - тоже прямоугольную.

Размеры резистора: l - длина, w - ширина, h - высота. За типоразмеры берутся важные для монтажа длина и ширина.

Они могут быть кодированы в одной из двух систем: дюймовой (JEDEC) или метрической (мм). Коэффициент пересчета из одной системы в другую - это длина дюйма с мм = 2,54.

Типоразмеры кодируются четырехзначным цифровым кодом, где первые две цифры - длина, вторые - ширина девайса. Причем размеры берутся или в сотых долях дюйма, или в десятых долях миллиметра, в зависимости от стандарта.

А код 1608 в метрической системе означает 1,6 мм длины и 0,8 мм ширины. Применив коэффициент пересчета, легко убедиться, что это один и тот же типоразмер. Однако существуют и другие измерения, которые определяются типоразмером.

Маркировка чип-резисторов, номиналы

Ввиду малой площади прибора для нанесения обычного для резисторов номинала пришлось изобретать специальную маркировку. Их бывает две чисто цифровые - трехцифровая и четырехцифровая) и две буквенно-цифровых (EIA-96), в которой две цифры и буква и кодировка для значений сопротивления меньше 0, в которой используется буква R для указания положения десятичной точки.

И есть еще одна особая маркировка. «Резистор» без всякого сопротивления, то есть просто перемычка из металла, имеет маркировку 0, или 000.

Цифровые маркировки

Цифровые маркировки содержат показатель (N) множителя (10 N) в качестве последней цифры, остальные две или три - мантисса сопротивления.

  1. Введение
  2. Корпуса SMD компонентов
  3. Типоразмеры SMD компонентов
    • SMD резисторы
    • SMD конденсаторы
    • SMD катушки и дроссели
  4. SMD транзисторы
  5. Маркировка SMD компонентов
  6. Пайка SMD компонентов

Введение

Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются "SMD". По-русски это значит "компоненты поверхностного монтажа". Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово "запекают" и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.

Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся.

Для тех, кто впервые столкнулся с SMD-компонентами естественным является смятение. Как разобраться в их многообразии: где резистор, а где конденсатор или транзистор, каких они бывают размеров, какие корпуса smd-деталей существуют? На все эти вопросы ты найдешь ответы ниже. Читай, пригодится!

Корпуса чип-компонентов

Достаточно условно все компоненты поверхностного монтажа можно разбить на группы по количеству выводов и размеру корпуса:

выводы/размер Очень-очень маленькие Очень маленькие Маленькие Средние
2 вывода SOD962 (DSN0603-2) , WLCSP2*, SOD882 (DFN1106-2) , SOD882D (DFN1106D-2) , SOD523, SOD1608 (DFN1608D-2) SOD323, SOD328 SOD123F, SOD123W SOD128
3 вывода SOT883B (DFN1006B-3) , SOT883, SOT663, SOT416 SOT323, SOT1061 (DFN2020-3) SOT23 SOT89, DPAK (TO-252) , D2PAK (TO-263) , D3PAK (TO-268)
4-5 выводов WLCSP4*, SOT1194, WLCSP5*, SOT665 SOT353 SOT143B, SOT753 SOT223, POWER-SO8
6-8 выводов SOT1202, SOT891, SOT886, SOT666, WLCSP6* SOT363, SOT1220 (DFN2020MD-6) , SOT1118 (DFN2020-6) SOT457, SOT505 SOT873-1 (DFN3333-8), SOT96
> 8 выводов WLCSP9*, SOT1157 (DFN17-12-8) , SOT983 (DFN1714U-8) WLCSP16*, SOT1178 (DFN2110-9) , WLCSP24* SOT1176 (DFN2510A-10) , SOT1158 (DFN2512-12) , SOT1156 (DFN2521-12) SOT552, SOT617 (DFN5050-32) , SOT510

Конечно, корпуса в таблице указаны далеко не все, так как реальная промышленность выпускает компоненты в новых корпусах быстрее, чем органы стандартизации поспевают за ними.

Корпуса SMD-компонентов могут быть как с выводами, так и без них. Если выводов нет, то на корпусе есть контактные площадки либо небольшие шарики припоя (BGA). Также в зависимости от фирмы-производителя детали могут могут различаться маркировкой и габаритами. Например, у конденсаторов может различаться высота.

Большинство корпусов SMD-компонентов предназначены для монтажа с помощью специального оборудования, которое радиолюбители не имеют и врядли когда-нибудь будет иметь. Связано это с технологией пайки таких компонентов. Конечно, при определённом упорстве и фанатизме можно и в домашних условиях паять .

Типы корпусов SMD по названиям

Название Расшифровка кол-во выводов
SOT small outline transistor 3
SOD small outline diode 2
SOIC small outline integrated circuit >4, в две линии по бокам
TSOP thin outline package (тонкий SOIC) >4, в две линии по бокам
SSOP усаженый SOIC >4, в две линии по бокам
TSSOP тонкий усаженный SOIC >4, в две линии по бокам
QSOP SOIC четвертного размера >4, в две линии по бокам
VSOP QSOP ещё меньшего размера >4, в две линии по бокам
PLCC ИС в пластиковом корпусе с выводами, загнутыми под корпус с виде буквы J >4, в четыре линии по бокам
CLCC ИС в керамическом корпусе с выводами, загнутыми под корпус с виде буквы J >4, в четыре линии по бокам
QFP квадратный плоский корпус >4, в четыре линии по бокам
LQFP низкопрофильный QFP >4, в четыре линии по бокам
PQFP пластиковый QFP >4, в четыре линии по бокам
CQFP керамический QFP >4, в четыре линии по бокам
TQFP тоньше QFP >4, в четыре линии по бокам
PQFN силовой QFP без выводов с площадкой под радиатор >4, в четыре линии по бокам
BGA Ball grid array. Массив шариков вместо выводов массив выводов
LFBGA низкопрофильный FBGA массив выводов
CGA корпус с входными и выходными выводами из тугоплавкого припоя массив выводов
CCGA СGA в керамическом корпусе массив выводов
μBGA микро BGA массив выводов
FCBGA Flip-chip ball grid array. М ассив шариков на подложке, к которой припаян кристалл с теплоотводом массив выводов
LLP безвыводной корпус

Из всего этого зоопарка чип-компонентов для применения в любительских целях могут сгодиться: чип-резисторы, чип-конденсаторы, чип-индуктивности, чип-диоды и транзисторы, светодиоды, стабилитроны, некоторые микросхемы в SOIC корпусах. Конденсаторы обычно выглядят как простые параллелипипеды или маленькие бочонки. Бочонки -- это электролитические, а параллелипипеды скорей всего будут танталовыми или керамическими конденсаторами.


Типоразмеры SMD-компонентов

Чип-компоненты одного номинала могут иметь разные габариты. Габариты SMD-компонента определяются по его "типоразмеру". Например, чип-резисторы имеют типоразмеры от "0201" до "2512". Этими четырьмя цифрами закодированы ширина и длина чип-резистора в дюймах. Ниже в таблицах можно посмотреть типоразмеры в миллиметрах.

smd резисторы

Прямоугольные чип-резисторы и керамические конденсаторы
Типоразмер L, мм (дюйм) W, мм (дюйм) H, мм (дюйм) A, мм Вт
0201 0.6 (0.02) 0.3 (0.01) 0.23 (0.01) 0.13 1/20
0402 1.0 (0.04) 0.5 (0.01) 0.35 (0.014) 0.25 1/16
0603 1.6 (0.06) 0.8 (0.03) 0.45 (0.018) 0.3 1/10
0805 2.0 (0.08) 1.2 (0.05) 0.4 (0.018) 0.4 1/8
1206 3.2 (0.12) 1.6 (0.06) 0.5 (0.022) 0.5 1/4
1210 5.0 (0.12) 2.5 (0.10) 0.55 (0.022) 0.5 1/2
1218 5.0 (0.12) 2.5 (0.18) 0.55 (0.022) 0.5 1
2010 5.0 (0.20) 2.5 (0.10) 0.55 (0.024) 0.5 3/4
2512 6.35 (0.25) 3.2 (0.12) 0.55 (0.024) 0.5 1
Цилиндрические чип-резисторы и диоды
Типоразмер Ø, мм (дюйм) L, мм (дюйм) Вт
0102 1.1 (0.01) 2.2 (0.02) 1/4
0204 1.4 (0.02) 3.6 (0.04) 1/2
0207 2.2 (0.02) 5.8 (0.07) 1

smd конденсаторы

Керамические чип-конденсаторы совпадают по типоразмеру с чип-резисторами, а вот танталовые чип-конденсаторы имеют своют систему типоразмеров:

Танталовые конденсаторы
Типоразмер L, мм (дюйм) W, мм (дюйм) T, мм (дюйм) B, мм A, мм
A 3.2 (0.126) 1.6 (0.063) 1.6 (0.063) 1.2 0.8
B 3.5 (0.138) 2.8 (0.110) 1.9 (0.075) 2.2 0.8
C 6.0 (0.236) 3.2 (0.126) 2.5 (0.098) 2.2 1.3
D 7.3 (0.287) 4.3 (0.170) 2.8 (0.110) 2.4 1.3
E 7.3 (0.287) 4.3 (0.170) 4.0 (0.158) 2.4 1.2

smd катушки индуктивности и дроссели

Индуктивности встречаются во множестве видов корпусов, но корпуса подчиняются все тому же закону типоразмеров. Это облегачает автоматический монтаж. Да и нам, радиолюбителям, позволяет легче ориентироваться.

Всякие катушки, дроссели и трансформаторы называются "моточные изделия". Обычно мы их мотаем сами, но иногда можно и прикупить готовые изделия. Тем более, если требуются SMD варианты, которые выпускаются со множестом бонусов: магнитное экранирование корпуса, компактность, закрытый или открытый корпус, высокая добротность, электромагнитное экранирование, широкий диапазон рабочих температур.

Подбирать требующуюся катушку лучше по каталогам и требуемому типоразмеру. Типоразмеры, как и для чип-резисторов задаются спомощью кода из четырех чисел (0805). При этом "08" обозначает длину, а "05" ширину в дюймах. Реальный размер такого SMD-компонента будет 0.08х0.05 дюйма.

smd диоды и стабилитроны

Диоды могут быть как в цилиндрических корпусах, так и в корпусах в виде небольших параллелипипедов. Цилиндрические корпуса диодов чаще всего предсавтлены корпусами MiniMELF (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41). Типоразмеры у них задаются также как у катушек, резисторов, конденсаторов.

Диоды, стабилитроны, конденсаторы, резисторы
Тип корпуса L* (мм) D* (мм) F* (мм) S* (мм) Примечание
DO-213AA (SOD80) 3.5 1.65 048 0.03 JEDEC
DO-213AB (MELF) 5.0 2.52 0.48 0.03 JEDEC
DO-213AC 3.45 1.4 0.42 - JEDEC
ERD03LL 1.6 1.0 0.2 0.05 PANASONIC
ER021L 2.0 1.25 0.3 0.07 PANASONIC
ERSM 5.9 2.2 0.6 0.15 PANASONIC, ГОСТ Р1-11
MELF 5.0 2.5 0.5 0.1 CENTS
SOD80 (miniMELF) 3.5 1.6 0.3 0.075 PHILIPS
SOD80C 3.6 1.52 0.3 0.075 PHILIPS
SOD87 3.5 2.05 0.3 0.075 PHILIPS

smd транзисторы

Транзисторы для поверхностного монтажа могут быть также малой, средней и большой мощности. Они также имеют соответствующие корпуса. Корпуса транзисторов можно условно разбить на две группы: SOT, DPAK.

Хочу обратить внимание, что в таких корпусах могут быть также сборки из нескольких компонентов, а не только транзисторы. Например, диодные сборки.

Маркировка SMD-компонентов

Мне иногда кажется, что маркировка современных электронных компонентов превратилась в целую науку, подобную истории или археологии, так как, чтобы разобраться какой компонент установлен на плату иногда приходитсяпровести целый анализ окружающих его элементов. В этом плане советские выводные компоненты, на которых текстом писался номинал и модель были просто мечтой для любителя, так как не надо было ворошить груды справочников, чтобы разобраться, что это за детали.

Причина кроется в автоматизации процесса сборки. SMD компоненты устанавливаются роботами, в которых установлены сециальные бабины (подобные некогда бабинам с магнитными лентами), в которых расположены чип-компоненты. Роботу все равно, что там в бабине и есть ли у деталей маркировка. Маркировка нужна человеку.

Пайка чип-компонентов

В домашних условиях чип-компоненты можно паять только до определённых размеров, более-менее комфортным для ручного монтажа считается типоразмер 0805. Более миниатюрные компоненты паяются уже с помощью печки. При этом для качественной пропайки в домашних условиях следует соблюдать целый комплекс мер.

Если ты заглядывал во внутренности современного электронного прибора, то наверняка обратил внимание на то, что радиоэлементы выглядят совсем не так, как у аппаратуры, выпущенной 25-30 лет назад. Обычные транзисторы, диоды и микросхемы заменили детали размером с булавочную головку, припаянные прямо поверх платы. Такие детальки, получившие название SMD, нередко похожи, как две капли воды. Как отличить одну от другой и узнать ее тип и назначение? Сегодня мы поговорим о SMD диодах, стабилитронах и их маркировке, а заодно научимся отличать один тип приборов от другого.

Что такое SMD

Прежде всего, что означает «SMD» и откуда такое странное название? Все очень просто: это аббревиатура от английского выражения Surface Mounted Device, означающего прибор, монтируемый на поверхность. SMD диод (слева), транзистор и светодиод для поверхностного монтажа

То есть, в отличие от обычной радиодетали, ножки которой вставляются в отверстия в печатной плате и припаиваются с другой ее стороны, smd прибор просто накладывается на контактные площадки, предусмотренные на плате, и с этой же стороны припаивается.
Фрагменты плат, собранных по smd технологии

Технология поверхностного монтажа не только позволила уменьшить габариты элементов и плотность элементов на плате, но и существенно упростила сам монтаж, с которым сегодня легко справляются роботы. Автомат прикладывает электронный компонент к нужному месту платы, разогревает это место ИК светом или лазером до температуры плавления нанесенной на площадки паяльной пасты, и монтаж элемента выполнен.


Робот для smd монтажа

Корпуса SMD элементов

Полупроводниковые приборы, предназначенные для поверхностного монтажа, выпускаются в корпусах различных типов. Для диодов и стабилитронов основные из них: металлостеклянные цилиндрические и пластмассовые (керамические) прямоугольные.


SMD полупроводники в корпусах различных типов

Ниже я привожу стандартные размеры SMD корпусов полупроводниковых приборов в зависимости от типа.

Типоразмеры металлостеклянных импортных SMD полупроводников

Тип корпуса

Общая длина, мм

Ширина контактных площадок, мм

Диаметр, мм

DO-213AA (SOD80) 3.5 0.48 1.65
DO-213AB (MELF) 5.0 0.48 2.52
DO-213AC 3.45 0.42 1.4
ERD03LL 1.6 0.2 1.0
ERO21L 2.0 0.3 1.25
ERSM 5.9 0.6 2.2
MELF 5.0 0.5 2.5
SOD80 (miniMELF) 3.5 0.3 1.6
SOD80C 3.6 0.3 1.52
SOD87 3.5 0.3 2.05

Типоразмеры импортных SMD полупроводников в пластмассовом и керамическом корпусах

Тип корпуса

Длина с выводами, мм

Длина без выводов, мм

Ширина, мм

Высота, мм

Ширина вывода, мм

DO-215AA 6.2 4.3 3.6 2.3 2.05
DO-215AB 9.9 6.85 5.9 2.3 3.0
DO-215AC 6.1 4.3 2.6 2.4 1.4
DO-215BA 6.2 4.45 2.6 2.95 1.3
ESC 1.6 1.2 0.8 0.6 0.3
SOD-123 3.7 2.7 1.55 1.35 0.6
SOD-123 2.5 1.7 1.25 1.0 0.3
SSC 2.1 1.3 0.8 0.8 0.3
SMA 5.2 4.1 2.6 1.7
SMB 5.4 4.3 3.6 2.3
SMC 7.95 6.8 5.9 3.3

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

На самом деле марок и типов корпусов SMD диодов и стабилитронов намного больше. Новые появляются быстрее, чем я печатаю, причем каждая солидная фирма-производитель старается ввести новый стандарт и обозвать его по-своему. То же самое можно сказать и про маркировку.

Что касается светоизлучающих SMD диодов (светодиодов), то тут все проще. Реальные размеры этих приборов соответствуют их типоразмеру. К примеру, имеет вид прямоугольника с размерами 2.8 х 3.5 мм, а 5050 – 5 х 5 мм.


Реальные размеры светоизлучающих SMD диодов соответствуют их обозначению

Маркировка SMD полупроводников

С корпусами мы разобрались, но ведь в корпусе одного и того же типоразмера могут находиться приборы с абсолютно различными характеристиками. Как определить, что у тебя в руках? Для этого служит та или иная маркировка, которая наносится на корпус прибора.

Диоды

SMD диоды в цилиндрических корпусах обычно имеют цветную маркировку — помечаются одной или двумя цветными полосками, расположенными у вывода катода.

Таблица цветовой маркировки импортных SMD диодов в цилиндрическом корпусе

Используется подобная маркировка и для диодов в прямоугольном корпусе:

Цветовая маркировка SMD диодов в корпусах SOD-123

* — полоска маркировки расположена ближе к выводу катода

Некоторые производители наносят на свои приборы символьную или цифровую маркировку.

Символьная маркировка SMD диодов, включая диоды Шоттки

Тип диода

Маркировка

BAS16 JU/A6
BAS21 JS
BAV70 JJ/A4
BAV99 JK; JE; A
BAW56 JD; A1
BAT54S1 L44
BAT54C1 L43
BAV23S L31

Полупроводниковые сборки

Нередко производители встраивают в один корпус сразу несколько диодов. Это не только уменьшает габариты всей конструкции, но и упрощает монтаж. Такие приборы называют SMD сборками. В зависимости от типа и назначения SMD сборка может состоять из самого различного количества полупроводников: от двух до нескольких десятков, причем соединяться между собой тем или иным образом они могут внутри самой SMD сборки.

К примеру, весьма распространенное соединение двух диодов Шоттки, использующихся в импульсных выпрямителях, — анодами или катодами. Не менее популярны и готовые выпрямительные мосты SMD, состоящие из четырех полупроводников. Как и обычные диоды, сборки имеют соответствующую маркировку.


Двухдиодная SMD сборка BAV70 и мост DB107GS внешний вид и их электрическая схема

Выпускаются такие SMD приборы в корпусах SOT, TSOP SSOP и могут иметь разное количество выводов, которое зависит от количества полупроводников и внутренней схемы их соединения. Маркировку наиболее популярных сборок я привожу ниже.

Маркировка полупроводниковых SMD сборок компании Hewlett Packard

#

Цоколевка

Состав сборки

Тип корпуса
2 D1i 2 последовательных диода SOT23
3 D1j 2 диода общий анод SOT23
4 D1h 2 диода общий катод SOT23
5 D6d 2 диода SOT143
7 D6c 4 диода, включенных кольцом SOT143
8 D6a диодный мост SOT143
С D2b 2 диода SOT323
Е D2c 2 диода общий анод SOT323
F D2d 2 диода общий катод SOT323
K D7b 2 диода SOT363
L D7f 3 диода SOT363
M D7g 4 диода общий катод SOT363
N D7h 4 диода общий анод SOT363
P D7i диодный мост SOT363
R D7j 4 диода, соединенных в кольцо SOT363

Маркировка полупроводниковых SMD сборок в корпусах SOT23 и SOT323

Тип прибора

Маркировка Состав сборки

Корпус

BAV70 JJ/A4 2 диода SOT23
BAV99 JK, JE, A7
BAW56 JD, A1
BAT54S L44 2 Шоттки
BAT54C L43
BAV70W A4 2 диода SOT323
BAV99W A7
BAW56W A1
BAT54AW 42 2 Шоттки
BAT54CW 43
BAT54SW 44

Согласно маркировке, нанесенной на корпус прибора, перед нами сборка BAT54S с полупроводниками Шоттки

Стабилитроны

Стабилитроны и диоды могут иметь как цветовую, так и символьную маркировку:

Цветовая маркировка SMD стабилитронов в стеклянном цилиндрическом корпусе

* — полоски маркировки расположены ближе к выводу катода

Символьная маркировка SMD стабилитронов BZX84 в прямоугольном корпусе

Тип прибора

Маркировка

Напряжение стабилизации, В

BZX84C2V7 W4 2.7
BZX84C3V0 W5 3.0
BZX84C3V3 W6 3.3
BZX84C3V9 W8 3.9
BZX84C4V3 Z0 4.3
BZX84C4V7 Z1 4.7
BZX84C5V1 Z2 5.1
BZX84C5V6 Z3 5.6
BZX84C6V2 Z4 6.2
BZX84C6V8 Z5 6.8
BZX84C7V5 Z6 7.5
BZX84C8V2 Z7 8.2
BZX84C9V1 Z8 9.1
BZX84C10 Z9 10.0
BZX84C12 Y2 12.0
BZX84C15 Y4 15.0
BZX84C18 Y6 18.0
BZX84C20 Y8 20.0

Символьная маркировка SMD стабилитронов BZT52 в прямоугольном корпусе

Светодиоды

Маркировка на SMD светодиодах обычно не проставляется (исключение могут составлять подделки — на них частенько наносят маркировку для большей убедительности), а их цифровое обозначение говорит лишь о размерах прибора. Всю остальную информацию можно найти в документации, прилагаемой к SMD светодиодам, или из таблички, которую я привожу ниже:

Основные характеристики SMD светодиодов различных типов

Тип прибора

Мощность, Вт

Световой поток, лм

Габариты, мм

2828 0.5 50 2,8 x2,8
2835 (a) 0.2 29 2,8 x3,5
2835 (b); 0.5 63 2,8 x3,5
2835 (c) 1 130 2,8 x3,5
3014 0.1 9-12 3,0 x 1,4
3020 0.06 5.4 3,0 x 2,0
3020 (b) 0.5 3,0 x 2,0
3020 (c) 1 125 3,0 x 2,0
3030 0.9 110-120 3,0 x 3,0;
3228 1 110 3,2 x 2,8
3258 0.2 6 3,2 x 5,8
3528 (a) 0.06 7 3,5 x 2,8
3528 (b) 1 110 3,5 x 2,8
3535 (a) 0.5 35-42 3,5 x 3,5
3535 (b) 1 110 3,5 x 3,5
3535 (c) 2 3,5 x 3,5
4014 0.2 22-32 4,0 x 1,4
4020 0.5 55 4,0 x 2,0
5050 0.2 14-22 5,0 x 5,0
5060 0.2 26 5,0 x 6,0
5630 0.5 30-45 5,6 x 3,0
5730 0.5 30-45 5,7 x 3,0
5733 0.5 35-50 5,7 x 3,3
5736 0.5 40-55 5,7 x 3,6
7014 (a) 0.5 35-49 7,0 x 1,4
7014 (b) 1 110 7,0 x 1,4
7020 1 110 7,0 x 2,0
7020 0.5 40-55 7,0 x 2,0
7030 1 110 7,0 x 3,0
8520 (a) 0.5 55-60 8,5 x 2,0
8520 (b) 1 110 8,5 x 2,0

Как видно из таблички, прибор 2835 может выпускаться в трех модификациях – на 0.2, 0.5 и 1 Вт. Более того, существует множество подделок, когда в корпус типоразмера 2835 умельцы встраивают кристалл любой мощности – от 0.1 Вт и ниже. А чтобы подделка выглядела убедительнее, как я уже писал выше, жулики могут даже поставить маркировку! Ни визуально, ни по типоразмеру определить, что у тебя действительно находится в руках, нельзя. Это можно сделать только по сопроводительной документации и ориентировочно по цене – чем она ниже, тем мощность светодиода меньше.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

На самом деле, имея некоторый опыт, определить примерную мощность светодиода можно без маркировки визуально. Кристалл нередко просматривается сквозь компаунд, которым он залит. Чем больше размер кристалла, тем мощнее прибор.

Но и это еще не все. Светодиод одного и того же типоразмера может иметь различную цветовую температуру и даже цвет. У тех же 2835 свет может быть теплым, дневным и холодным, а, к примеру, SMD 3020 может оказаться любого цвета свечения.

Изделие 5050 оснащен тремя кристаллами, размещенными в одном корпусе, причем каждый из них тоже может иметь свой цвет свечения. Вся эта информация находится только в сопроводительной документации.


Светодиод 5050 с тремя кристаллами и светодиодная лента, собранная на трехцветных SMD 5050

Вот и закончилась наша беседа об SMD полупроводниках и их маркировке. Теперь ты знаешь, какими они бывают, а при необходимости и сможешь по маркировке определить тип SMD диода, стабилитрона или светодиода, который держишь в руках.

В радиолюбительском деле широкое практическое применение получили не только обычные радиокомпоненты с выводами, но и очень маленькие с непонятными надписями радиоэлементы. Их называют "SMD", т.е "радио детали поверхностного монтажа". В маркировке SMD компонентов и должен помочь разобраться этот справочный материал.


все компоненты СМД монтажа можно условно разбить на несколько групп по размеру корпуса и количеству выводов:

выводы/размер Очень-очень маленькие Очень маленькие Маленькие Средние
2 вывода SOD962 (DSN0603-2) , WLCSP2*, SOD882 (DFN1106-2) , SOD882D (DFN1106D-2) , SOD523, SOD1608 (DFN1608D-2) SOD323, SOD328 SOD123F, SOD123W SOD128
3 вывода SOT883B (DFN1006B-3) , SOT883, SOT663, SOT416 SOT323, SOT1061 (DFN2020-3) SOT23 SOT89, DPAK (TO-252) , D2PAK (TO-263) , D3PAK (TO-268)
4-5 выводов WLCSP4*, SOT1194, WLCSP5*, SOT665 SOT353 SOT143B, SOT753 SOT223, POWER-SO8
6-8 выводов SOT1202, SOT891, SOT886, SOT666, WLCSP6* SOT363, SOT1220 (DFN2020MD-6) , SOT1118 (DFN2020-6) SOT457, SOT505 SOT873-1 (DFN3333-8), SOT96
> 8 выводов WLCSP9*, SOT1157 (DFN17-12-8) , SOT983 (DFN1714U-8) WLCSP16*, SOT1178 (DFN2110-9) , WLCSP24* SOT1176 (DFN2510A-10) , SOT1158 (DFN2512-12) , SOT1156 (DFN2521-12) SOT552, SOT617 (DFN5050-32) , SOT510

Корпуса СМД элементов могут быть и с выводами, и без них. Если выводы отсутствуют, то на корпусе имеются контактные площадки или очень маленькие шарики припоя (BGA). Кроме того все СМД различаются габаритами и маркировкой. Например, у емкостей может отличаться высота.


В основном корпуса SMD-компонентов монтируются с помощью специального оборудования, которое имеется далеко не у каждого радиолюбителя. Но при большом желании можно и в дома паять BGA-компоненты.

Корпуса SMD компонентов для поверхностного монтажа


Несмотря на огромное число стандартов, регламентирующих требования к ЧИП-корпусам, многие изготовители выпускают элементы в корпусах, не соответствующих международным стандартам. Бывают ситуации, когда корпус с типовыми размерами, имеет нестандартное название.

Обычно название корпуса бывает из четырех цифр, которые говорят о его длине и ширине. Но у одних фирм эти параметры задаются в дюймах, а у других - в миллиметрах. Например, название 0805 получается так: 0805 = длина х ширина = (0.08 х 0.05) дюйма , а корпус 5845 (5.8 х 4.5) мм: Корпуса с одним и тем же названием бывают разной высоты (Это обусловлено: для конденсаторов - величиной емкости и рабочим напряжением, для резисторов - рассеиваемой мощностью и т.д.), различные контактные площадки изготавливаются из различных материалов, но рассчитаны при этом на стандартное установочное место. Ниже в таблице приводим размеры в миллиметрах наиболее популярных типов корпусов.






Типы SMD корпусов по зарубежным названиям:


Из всего этого обилия чип-элементов для радиолюбителя могут сгодиться: чип-резисторы, -индуктивности,-конденсаторы, -диоды и транзисторы, светодиоды, стабилитроны, некоторые микросхемы в SOIC исполнении. Емкости обычно напоминают простые параллелипипеды или маленькие бочонки. Бочонки - это электролитические конденсаторы, а параллелипипеды - танталовые или керамические.


Маркировка SMD-компонентов резисторы

Все чип резисторы для поверхностного монтажа обычно маркируются. Кроме сопротивлений в 0402-ом корпусе, т.к они не имеют маркировки в связи с их миниатюрными размерами. Резисторы других типоразмеров маркируются двумя основными методами. Если у чип резисторов допуск сопротивления 2%, 5% или 10%, то их маркировка состоит из 3-х цифр: две первые обозначают мантиссу, а третья является степенью для десятичного основания, т.е, получается значение сопротивления резистора в Омах. Например, код сопротивления 106 - первые две цифры 10 - это мантисса, 6 - степень, в итоге получаем 10х10 6 , то есть 10 Мом. Иногда к цифровой маркировке прибавляется латинская буква R - она является дополнительным множителем и обозначает десятичную точку. SMD резисторы типоразмера 0805 и более, имеют точность 1% и обозначаются кодом из четырех цифр: первые три - мантисса, а последняя - степень для десятичного основания. К данной маркировке также может прибавляться латинский символ R. Например, код сопротивления 3303 - 330 - это мантисса, 3 - степень, в итоге получаем 330х10 3 , т.е 33 кОм. Кодовая маркировка SMD сопротивлений с допуском в 1% и типоразмером 0603 обозначается всего двумя цифрами и буквой с помощью таблицы. Цифры обозначают код, по которому из нее выбирается значение мантиссы, а буква - множитель с десятичным основанием. Например, код 14R - первые две цифры 14 - это код. По таблице для кода 14 значение мантиссы 137, R - степень равная 10 -1 , в итоге получаем 137х10 -1 , то есть 13,7 Ом. Резисторы с нулевым сопротивлением (перемычки), маркируются просто цифрой 0.

Каждый полупроводниковый прибор -smd транзистор, имеет свое уникальное обазначение или маркировку, по которой можно его индитифицировать из кучи других ЧИП компонентов.

Маркировка SMD диодов

Имея дома радиоэлектронную лабораторию, можно своими руками сделать самые различные приспособления для электрооборудования или сами приборы, что позволит значительно сэкономить на покупке техники. Важным элементом многих электрических схем приборов является стабилитрон.

Такой элемент (smd, смд) является необходимой частью многих электросхем. Благодаря обширной области применения, стабилитрон имеет различную маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную, информацию о данном элементе. Наша сегодняшняя статья поможет вам разобраться в том, какая цветовая маркировка встречается на корпусе (стеклянном и нет) импортных стабилитронов.

Что представляет собой данный элемент электрических схем

Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.

Вольт-амперная характеристика стабилитрона

Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.

Обратите внимание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.

Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:

  • UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
  • ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
  • IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
  • IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
  • IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.

Такая маркировка важна при выборе элемента под определенную электросхему.

Обозначения работы элемента электросхемы

Схематическое обозначение стабилитрона

Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:

Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.

Включение стабилитрона

На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.

Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.

Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.

Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.

Принцип функционирования стабилизационных диодов

Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.

Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.

Обратите внимание! При включении такого smd диода нужно соблюдать обратную полярность. Это означает, что подключение проводится анодом к минусу.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.

Как отличить стабилизационный диод от обычного полупроводника

Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции.
Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В).
Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:

Схема приставки мультиметра

В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В.
При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение.
При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.

Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.

Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой.
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4
Вот так можно выяснить, стабилитрон у вас или обычный диод.

Подробно о цветовой маркировке стабилизирующего диода

Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:

  • буква или цифра;
  • буква.

Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия.
Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:

Пример маркировки микросхем

Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.

Цветовая маркировка стабилитрона

  • первая полоска обозначает тип устройства;
  • вторая – полупроводник;
  • третья – что это за прибор, а также, какая у него проводимость;
  • четвертая — номер разработки;
  • пятая — модификация устройства.

Нужно отметить, что четвертая и пятая полоски не очень важны для выбора изделия.

Заключение

Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.


Правильно выбираем автономные датчики для движения с сиреной