Нефтегазовые новости. Таграс-ремсервис осваивает новые технологические решения для грп

Эта технология, применяемая для интенсификации работы и повышения отдачи нефтедобывающих скважин уже более полувека, вызывает, пожалуй, наиболее жаркие споры среди экологов, ученых, простых граждан, а нередко даже и самих работников добывающей отрасли. Между тем смесь, которая закачивается в скважину во время гидроразрыва, на 99% состоит из воды и песка, и лишь на 1% – из химических реагентов.

Что мешает нефтеотдаче

Основная причина низкой продуктивности скважин наряду с плохой естественной проницаемостью пласта и некачественной перфорацией - снижение проницаемости призабойной зоны пласта. Так называется область пласта вокруг ствола скважины, подверженная наиболее интенсивному воздействию различных процессов, сопровождающих строительство скважины и ее последующую эксплуатацию и нарушающих первоначальное равновесное механическое и физико-химическое состояние пласта. Само бурение вносит изменения в распределение внутренних напряжений в окружающей забой породе. Снижение продуктивности скважин при бурении происходит также в результате проникновения бурового раствора или его фильтрата в призабойную зону пласта

Причиной низкой продуктивности скважин может быть и некачественная перфорация вследствие применения маломощных перфораторов, особенно в глубоких скважинах, где энергия взрыва зарядов поглощается энергией больших гидростатических давлений.

Снижение проницаемости призабойной зоны пласта происходит и при эксплуатации скважин, сопровождающейся нарушением термобарического равновесия в пластовой системе и выделением из нефти свободного газа, парафина и асфальтосмолистых веществ, закупоривающих поровое пространство коллектора. Интенсивное загрязнение призабойной зоны пласта отмечается и в результате проникновения в нее рабочих жидкостей при проведении в скважинах различных ремонтных работ. Приемистость нагнетательных скважин ухудшается вследствие закупорки порового пространства пласта продуктами коррозии, илом, нефтепродуктами, содержащимися в закачиваемой воде. В результате протекания подобных процессов возрастают сопротивления фильтрации жидкости и газа, снижаются дебиты скважин и возникает необходимость в искусственном воздействии на призабойную зону пласта с целью повышения продуктивности скважин и улучшения их гидродинамической связи с пластом.

Технология фрекинга

Для повышения нефтеотдачи пласта, интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин используется метод гидровлического разрыва пласта или фрекинга. Технология заключается в создании высокопроводимой трещины в целевом пласте под действием подаваемой в него под давлением жидкости для обеспечения притока добываемого флюида к забою скважины. После проведения ГРП дебит скважины, как правило, резко возрастает – либо же существенно снижается депрессия. Технология ГРП позволяет «оживить» простаивающие скважины, на которых добыча нефти или газа традиционными способами уже невозможна или малорентабельна.

Гидравлический разрыв пласта (ГРП) является одним из наиболее эффективных средств повышения производительности скважин, поскольку приводит не только к интенсификации выработки запасов, находящихся в зоне дренирования скважины, но и, при определенных условиях, позволяет существенно расширить эту зону, приобщив к выработке слабо дренируемые зоны и пропластки – и, следовательно, достичь более высокой конечной нефтеотдачи.

История метода ГРП

Первые попытки интенсификации добычи нефти из нефтяных скважин были предприняты еще в 1890-х годах. В США, где добыча нефти в это время развивалась стремительными темпами, был успешно испытан метод стимулирования добычи из плотных пород с помощью нитроглицерина. Идея заключалась в том, чтобы взрывом нитроглицерина раздробить плотные породы в призабойной зоне скважины и обеспечить увеличение притока нефти к забою. Метод успешно применялся некоторое время, несмотря на свою очевидную опасность.

Первый коммерчески успешный гидроразрыв пласта был осуществлен в 1949 году в США, после чего их количество стало резко возрастать. К середине 50-х годов количество проводимых ГРП достигло 3000 в год. В 1988 году общее количество проведенных ГРП перевалило за 1 миллион операций, и это только в США.

В отечественной практике метод ГРП начали применять с 1952 года. Пик применения метода был достигнут в 1959 году, после чего количество операций снизилось, а затем эта практика и вовсе прекратилась. С начала 1970-х и до конца 1980-х ГРП в отечественной нефтедобыче в промышленных масштабах не проводились. В связи с вводом в разработку крупных нефтяных месторождений Западной Сибири потребность в интенсификации добычи попросту отпала.

И день сегодняшний

Возрождение практики применения ГРП в России началось только в конце 1980-х. В настоящее время лидирующие позиции по количеству проводимых ГРП занимают США и Канада. За ними следует Россия, в которой применение технологии ГРП производят в основном на нефтяных месторождениях Западной Сибири. Россия – практически единственная страна (не считая Аргентины) за пределами США и Канады, где ГРП является привычной практикой и воспринимается вполне адекватно. В других странах применение технологии гидроразрыва затруднено из-за местных предубеждений и недопонимания технологии. В некоторых из них действуют существенные ограничения по использованию технологии ГРП вплоть до прямого запрета на ее применение.

Ряд экспертов утверждают, что использование технологии гидроразрыва при добыче нефти – это нерациональный, варварский подход к экосистеме. В то же время, метод широко применяется практически всеми крупными нефтяными компаниями.

Применение технологии ГРП достаточно обширно – от низко- до высоко проницаемых коллекторов в газовых, газоконденсатных и нефтяных скважинах. Кроме того, с использованием ГРП можно решать специфические задачи, например, ликвидировать пескопроявления в скважинах, получать информацию о ФЕС объектов испытания в поисково-разведочных скважинах и т.д..

В последние годы развитие технологий ГРП в России направлено на увеличение объемов закачки проппанта, производство азотных ГРП, а также многостадийных ГРП в пласте.

Оборудование для гидроразрыва пласта

Оборудование, необходимое для гидроразрыва пласта, производит целый ряд предприятий, как зарубежных, так и отечественных. Одно из них - компания «ТРАСТ-ИНЖИНИРИНГ» , которая представляет широкий выбор оборудования для ГРП в стандартном исполнении, так и в виде модификации, выполняемой по желанию заказчика.

В качестве конкурентных преимуществ продукции ООО «ТРАСТ-ИНЖИНИРИНГ» необходимо отметить высокую долю локализации производства; применение самых современных технологий проектирования и производства; использование узлов и комплектующих от мировых лидеров отрасли. Важно отметить и присущую специалистам компании высокую культуру проектирования, производства, гарантийного, постгарантийного и сервисного обслуживания. Оборудование для ГРП производства ООО «ТРАСТ-ИНЖИНИРИНГ» легче приобрести благодаря наличию представительств в Москве (Российская Федерация), Ташкенте (Республика Узбекистан), Атырау (Республика Казахстан), а также в Панчево (Сербия).

Разумеется, метод ГРП, как и любая другая технология, применяемая в добывающей отрасли, не лишен определенных недостатков. Один из минусов фрекинга – в том, что положительный эффект операции может быть сведён на нет непредвиденными ситуациями, риск возникновения которых при столь обширном вмешательстве довольно велик (например, возможно непредвиденное нарушение герметичности близлежащего водного резервуара). Вместе с тем. гидравлический разрыв пласта является сегодня одним из наиболее эффективных методов интенсификации скважин, вскрывающих не только низкопроницаемые пласты, но и коллекторы средней и высокой проницаемости. Наибольший эффект от проведения ГРП может быть достигнут при внедрении комплексного подхода к проектированию гидроразрыва как элемента системы разработки с учетом разнообразных факторов, таких как проводимость пласта, система расстановки скважин, энергетический потенциал пласта, механика трещины, характеристики жидкости разрыва и проппанта, технологические и экономические ограничения.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

ГРП состоит из трех принципиальных операций:

1. создание в коллекторе искусственных трещин (или расширение естественных);

2. закачка по НКТ в ПЗС жидкости с наполнителем трещин;

3. продавка жидкости с наполнителем в трещины для их закрепления.

При этих операциях используют три категории жидкостей :

  • жидкость разрыва,
  • жидкость-песконоситель
  • продавочную жидкость.

Рабочие агенты должны удовлетворять следующим требованиям:

1. Не должны уменьшать проницаемость ПЗС. При этом, в зависимости от категории скважины (добывающая; нагнетательная; добывающая, переводимая под нагнетание воды), используются различные по своей природе рабочие жидкости.

2. Контакт рабочих жидкостей с горной породой ПЗС или с пластовыми флюидами не должен вызывать никаких отрицательных физико-химических реакций, за исключением случаев применения специальных рабочих агентов с контролируемым и направленным действием.

3. Не должны содержать значительного количества посторонних механических примесей (т.е. их содержание регламентируется для каждого рабочего агента).

4. При использовании специальных рабочих агентов, например, нефтекислотной эмульсии, продукты химических реакций должны быть полностью растворимыми в продукции пласта и не снижать проницаемости ПЗС.

5. Вязкость используемых рабочих жидкостей должна быть стабильной и иметь низкую температуру застывания в зимнее время (в противном случае процесс ГРП должен проводиться с использованием подогрева).

6. Должны быть легкодоступными, недефицитными и недорогостоящими.

Технология проведения ГРП :

  • Подготовка скважины - исследование на приток или приемистость, что позволяет получить данные для оценки давления разрыва, объема жидкости разрыва и других характеристик.
  • Промывка скважины - скважина промывается промывочной жидкостью с добавкой в нее определенных химических реагентов. При необходимости осуществляют декомпрессионную обработку, торпедирование или кислотное воздействие. При этом рекомендуется использовать насосно-компрессорные трубы диаметром 3-4" (трубы меньшего диаметра нежелательны, т.к. велики потери на трение).
  • Закачка жидкости разрыва – создается необходимое для разрыва горной породы давление для образования новых и раскрытия существовавших в ПЗС трещин. В зависимости от свойств ПЗС и других параметров используют либо фильтрующиеся, либо слабофильтрующиеся жидкости.

Жидкости разрыва :

в добывающих скважинах

Дегазированную нефть;

Загущенную нефть, нефтемазутную смесь;

Гидрофобную нефтекислотную эмульсию;

Гидрофобную водонефтяную эмульсию;

Кислотно-керосиновую эмульсию и др.;

в нагнетательных скважинах

Чистую воду;

Водные растворы соляной кислоты;

Загущенную воду (крахмалом, полиакриламидом - ПАА, сульфит-спиртовой бардой - ССБ, карбоксиметилцеллюлозой - КМЦ);

Загущенную соляную кислоту (смесь концентрированной соляной кислоты с ССБ) и др.

При выборе жидкости разрыва необходимо учитывать и предотвращать набухаемость глин, вводя в нее химические реагенты, стабилизирующие глинистые частицы при смачивании (гидрофобизация глин).

Как уже отмечалось, давление разрыва не является постоянной величиной и зависит от ряда факторов.

Повышение забойного давления и достижение величины давления разрыва возможно при опережении скоростью закачки скорости поглощения жидкости пластом. У низкопроницаемых пород давление разрыва может быть достигнуто при использовании в качестве жидкости разрыва жидкостей невысокой вязкости при ограниченной скорости их закачки. Если породы достаточно хорошо проницаемы, то при использовании маловязких жидкостей закачки требуется большая скорость закачки; при ограниченной скорости закачки необходимо использовать жидкости разрыва повышенной вязкости. Если ПЗС представлена коллектором высокой проницаемости, то следует применять большие скорости закачки и высоковязкие жидкости. При этом должна учитываться и толщина продуктивного горизонта (пропластка), определяющая приемистость скважины.

Важным технологическим вопросом является определение момента образования трещины и его признаки. Момент образования трещины в монолитном коллекторе характеризуется изломом на зависимости «объемный расход жидкости закачки - давление закачки» и значительным снижением давления закачки. Раскрытие уже существовавших в ПЗС трещин характеризуется плавным изменением зависимости «расход - давление», но снижения давления закачки не отмечается. В обоих случаях признаком раскрытия трещин является увеличение коэффициента приемистости скважины.

  • Закачка жидкости-песконосителя. Песок или любой другой материал, закачиваемой в трещину, служит наполнителем трещины, являясь, каркасом внутри нее и предотвращает смыкание трещины после снятия (снижения) давления. Жидкость-песконоситель выполняет транспортную функцию. Основными требованиями к жидкости-песконосителю являются высокая пескоудерживающая способность и низкая фильтруемость.

Указанные требования диктуются условиями эффективного заполнения трещин наполнителем и исключением возможного оседания наполнителя в отдельных элементах транспортной системы (устье, НКТ, забой), а также преждевременной потерей наполнителем подвижности в самой трещине. Низкая фильтруемость предотвращает фильтрацию жидкости-песконосителя в стенки трещины, сохраняя постоянную концентрацию наполнителя в трещине и предотвращая закупорку трещины наполнителем в ее начале. В противном случае концентрация наполнителя в начале трещины возрастает за счет фильтрации жидкости-песконосителя в стенки трещины, и перенос наполнителя в трещине становится невозможным.

В качестве жидкостей-песконосителей в добывающих скважинах используются вязкие жидкости или нефти, желательно со структурными свойствами; нефтемазутные смеси; гидрофобные водонефтяные эмульсии; загущенная соляная кислота и др. В нагнетательных скважинах в качестве жидкостей-песконосителей используются растворы ССБ; загущенная соляная кислота; гидрофильные нефтеводяные эмульсии; крахмально-щелочные растворы; нейтрализованный черный контакт и др.

Для снижения потерь на трение при движении этих жидкостей с наполнителем по НКТ используют специальные добавки (депрессоры) - растворы на мыльной основе; высокомолекулярные полимеры и т.п.

  • Закачка продавочной жидкости – продавка жидкости-песконосителя до забоя и задавка ее в трещины. С целью предотвращения образования пробок из наполнителя, должно соблюдаться следующее условие:

где - скорость движения жидкости-песконосителя в колонне НКТ, м/с;

Вязкость жидкости-песконосителя, мПа с.

Как правило, в качестве продавочных используются жидкости с минимальной вязкостью. В добывающих скважинах часто используют собственную дегазированную нефть (при необходимости ее разбавляют керосином или соляркой); в нагнетательных скважинах используется вода, как правило, подтоварная.

В качестве наполнителя трещин могут использоваться:

Кварцевый отсортированный песок с диаметром песчинок 0,5 +1,2 мм, который имеет плотность около 2600 кг/м3. Так как плотность песка существенно больше плотности жидкости-песконосителя, то песок может оседать, что предопределяет высокие скорости закачки;

Стеклянные шарики;

Зерна агломерированного боксита;

Полимерные шарики;

Специальный наполнитель - проппант.

Основные требования к наполнителю:

Высокая прочность на сдавливание (смятие);

Геометрически правильная шарообразная форма.

Совершенно очевидно, что наполнитель должен быть инертным по отношению к продукции пласта и длительное время не изменять своих свойств. Практически установлено, что концентрация наполнителя изменяется от 200 до 300 кг на 1 м3 жидкости-песконосителя.

  • После закачки наполнителя в трещины скважина оставляется под давлением . Время выстойки должно быть достаточным, чтобы система (ПЗС) перешла из неустойчивого в устойчивое состояние, при котором наполнитель будет прочно зафиксирован в трещине. В противном случае в процессе вызова притока, освоения и эксплуатации скважины наполнитель выносится из трещин в скважину. Если при этом скважина эксплуатируется насосным способом, вынос наполнителя приводит к выходу из строя погружной установки, не говоря об образовании на забое пробок из наполнителя. Вышесказанное является чрезвычайно важным технологическим фактором, пренебрежение которым резко снижает эффективность ГРП вплоть до отрицательного результата.
  • Вызов притока , освоение скважины и ее гидродинамическое исследование. Проведение гидродинамического исследования является обязательным элементом технологии, т.к. его результаты служат критерием технологической эффективности процесса.

Принципиальная схема оборудования скважины для проведения ГРП представлена на рис. 5.5 . При проведении ГРП колонна НКТ должна быть запакерована и заякорена.

Важными вопросами при проведении ГРП являются вопросы определения местоположения, пространственной ориентации и размеров трещин. Такие определения должны быть обязательными при производстве ГРП в новых регионах, т.к. позволяют разработать наилучшую технологию процесса. Перечисленные задачи решаются на основе метода наблюдения за изменением интенсивности гамма-излучения из трещины, в которую закачана порция наполнителя, активированная радиоактивным изотопом, например, кобальта, циркония, железа. Сущность данного метода заключается в добавлении к чистому наполнителю определенной порции активированного наполнителя и в проведении гамма-каротажа сразу после образования трещин и закачки в трещины порции активированного наполнителя; сравнивая эти результаты гамма-каротажа, судят о количестве, местоположении, пространственной ориентации и размерах образовавшихся трещин. Указанные исследования выполняются специализированными промыслово-геофизическими организациями.

Рис. 5.5. Принципиальная схема оборудования скважины для проведения ГРП:

1 - продуктивный пласт; 2 - трещина; 3 - хвостовик; 4 - пакер; 5 -якорь; 6 - обсадная колонна; 7 - колонна НКТ; 8 - устьевое оборудование; 9 - жидкость разрыва; 10 - жидкость-песконоситель; 11 - жидкость продавки; 12 - манометр.

Проблемы применения ГРП. ЖОПА там, где рядом с продуктивным пластом находятся пласты, содержащие воду. Это могут быть водоносные пласты, если подошвенная вода. Кроме того, рядом с обработанным пластом могут быть пласты, которые заводнены.

Образующиеся при ГРП вертикальные трещины в подобных случаях создают гидродинамическую связь скважины с водоносной зоной. В большинстве случаев водоносная зона имеет большую проницаемость по сравнению с продуктивным пластом, где проводят ГРП. Именно поэтому ГРП может приводить к полному обводнению скважин. На старых месторождениях многие скважины находятся в аварийном состоянии. Проведение ГРП в подобных условиях приводят к разрыву эксплутационной колонны. Теоретически в подобных скважинах для защиты колонны используют пакер, но из-за вмятин на колонне и коррозии именно в подобных скважинах пакер свою роль не выполняет. Кроме того из-за ГРП может разрушаться цементный камень.

При ГРП трещины создаются в пропластках с различной проницаемостью, но очень часто разорвать высокопроницаемый пропласток легче чем низкопроницаемый. В пропластке с большей проницаемостью трещина может быть более протяженной. При таком варианте после ГРП дебит скважины по нефти увеличивается, но увеличивается обводненность, если скважина была обводнена. Именно поэтому, до и после ГРП необходимо проводить анализ добываемой воды, чтобы узнать откуда в скважине появилась вода.

При ГРП, как и при любых методах интенсификации всегда встает вопрос о компенсации больших отборов закачкой.

Директор ИВТ СО РАН д.ф.-м.н. Сергей Григорьевич Черный.

Для чего нужен гидроразрыв пласта (ГРП), почему его необходимо моделировать, что такое продвинутая модель и кому она интересна – на эти и другие вопросы отвечает директор Института вычислительных технологий СО РАН доктор физико-математических наук Сергей Григорьевич Черный.

1. Для чего нужен ГРП

Гидроразрыв изобретен для разработки месторождений полезных ископаемых и строительства подземных сооружений в сложных геолого-физических условиях – когда необходимы методы управляемого разрушения и разгрузки массивов горных пород, создания в них дренажных систем, изолирующих экранов и так далее. Особое место ГРП занимает среди методов интенсификации работы нефтяных и газовых добывающих скважин и увеличения приемистости нагнетательных скважин. В 2015-2017 году в России проводилось по 14-15 тысяч операций ГРП в год, в США – около 50 тысяч.

Метод ГРП заключается в создании высокопроводимой трещины в нетронутом массиве породы для обеспечения притока к забою скважины газа, нефти, их смеси, конденсата и др. Технология проведения ГРП включает в себя закачку в скважину с помощью мощных насосов жидкости гидроразрыва: геля, воды, либо разбавленной кислоты. Давление закачки выше давления разрыва пласта, поэтому образуется трещина. Для ее закрепления в открытом состоянии используется либо проппант, расклинивающий разлом, либо кислота, разъедающая стенки созданной трещины. Название проппант пришло из англоязычного сокращения «propping agent» – расклинивающий наполнитель. В этом качестве используется, например, кварцевый песок или специальные керамические шарики, более прочные и крупные, а, значит, более проницаемые.

2. Для чего нужно моделирование ГРП

Создание технологии ГРП требует моделирования его процесса. Это позволяет прогнозировать геометрию трещины и оптимизировать всю технологию ГРП. В частности, очень важно обеспечить правильную форму трещины на начальном участке ее распространения в окрестности скважины. Надо, чтобы у нее отсутствовали резкие перегибы, которые могут привести к возникновению пробок, закупоривающих канал откачки добываемых нефти или газа. Возникает естественный вопрос: откуда брать необходимые для работы модели геофизические данные о пласте, такие как проницаемость, пористость, сжимаемость, напряженное состояние и другие?

Такой вопрос возник задолго до разработки технологии ГРП и наука предложила множество методов определения различных параметров задачи. Это и анализ кернов (образцов породы, получаемых во время бурения), и множественные датчики давления и деформаций, установленные в различных частях скважины, и методы сейсморазведки, в которых по времени прохождения упругих волн, индуцируемых с поверхности, определяют границы различных материалов в породе и их параметры, и даже замеры естественной радиоактивности, которая может показать, например, местоположение глиняных пропластков.

Для определения главных напряжений залегания в нетронутом массиве у геофизиков имеются проверенные технологии, в том числе базирующиеся на натурном бурении и геофизических измерениях. Также используется технология мини-ГРП, в которой по параметрам, получаемым в процессе создания маленькой трещины, калибруются модели, по которым будет предсказываться поведение трещины большего размера. Разумеется, полную картину не может дать ни один из подходов, поэтому методы получения информации о пласте постоянно совершенствуются, в том числе и в нашем институте. Например, нами показано, что параметры трещиноватости породы, окружающей скважину, можно определить, решая обратные задачи на основе моделей фильтрации бурового раствора и замеряемых зависимостей давления в скважине. Также мы определяем структуру и параметры прискважинной области по результатам каротажного зондирования, решая обратную задачу на основе уравнений Максвелла.

3. Давно ли ведется моделирование ГРП

Сравнительно давно, с 50-х годов XX века, практически сразу после того, как ГРП как метод увеличения продуктивности скважины начал использоваться. Тогда же, в 1955 г. была предложена одна из первых моделей ГРП – модель Христиановича-Желтова, получившая дальнейшее развитие в работе Гиртсма и де Клерка и известная во всем мире как модель Христиановича-Гиртсма-де Клерка (KGD). Немного позднее были созданы еще две известные, широко используемые и в настоящее время модели: Перкинса-Керна-Нордгрена (PKN) и модель плоскорадиальной трещины. Эти три модели представляют соответственно три основные геометрические концепции во множестве плоских одномерных моделей:

  • прямолинейное распространение трещины из линейного источника бесконечной высоты;
  • прямолинейное распространение трещины из линейного источника конечной высоты;
  • радиальное симметричное распространение трещины из точечного источника.

Три базовых концепта и их модификации достаточно хорошо описывают ГРП для типичных ориентаций скважин в традиционных месторождениях нефти и газа, предполагающих вертикальное или наклонное бурение и одну трещину гидроразрыва на одну скважину. Эти модели не потеряли своей актуальности и благодаря своей скорости используются в современных симуляторах ГРП, как для получения первичной информации о трещине, так и для оптимизации параметров ГРП.

Однако в настоящее время в связи с истощением традиционных, легкоизвлекаемых запасов все большее место в мире занимает разработка нетрадиционных месторождений, которые характеризуются более сложной структурой нефтеносных и газоносных пластов. Отличительными особенностями таких пластовых резервуаров являются низкая (плотный песок) и ультранизкая (сланцевые газ и нефть) или наоборот экстремально высокая (песчаник с тяжелой нефтью) проницаемость пласта, присутствие разветвленной системы трещин, которые могут содержать одно или более семейств, ориентированных в различных направлениях и пересекающих друг друга. Очень часто разработка таких нетрадиционных месторождений становится экономически невыгодной без такой интенсификации добычи, как ГРП. В то же время традиционные модели ГРП не позволяют адекватно описывать эти процессы, и требуются новые более изысканные (современные, продвинутые, усовершенствованные) модели.

4. Способен ли ИВТ СО РАН решить проблему моделирования ГРП для нетрадиционных месторождений

ГРП – сложная технология, и разработка модели всего процесса не под силу одному институту, поэтому во всем мире группы ученых концентрируются на различных частях этой технологии. ИВТ обладает большим опытом в моделировании начального этапа распространения трещины ГРП: от ее образования до достижения ей размеров нескольких метров. На этом этапе, в отличие от развитой трещины, размеры которой достигают уже сотен метров, сильно заметно и сильно влияет искривление, которое необходимо учитывать.

Поэтому мы развиваем направление усовершенствования моделей в плане учета в них трехмерности процесса распространения. Для реалистичного описания продвижения фронта трещины в произвольном трехмерном случае необходимо применять трехмерный же критерий нахождения приращения фронта трещины и выбора направления его распространения, учитывающий смешанное нагружение по всем трем модам напряжений. Среди существующих работ, посвященных трехмерным моделям распространения, отклонение фронта трещины определяется только по второй моде. В них используются двумерные плоские критерии. Нами построена и верифицирована новая полностью трехмерная численная модель распространения трещины от полости под воздействием давления закачиваемой жидкости сложной реологии с трехмерным критерием распространения. Она позволила описать эволюцию трещины от момента ее образования до выхода на главное направление, с учетом ее искривления.

Еще одной отличительной особенностью этой модели является одновременное рассмотрение в ней самой скважины и переменной нагрузки, вызванной течением жидкости, в распространяющейся от скважины трещине. Обычно в работах по трехмерному моделированию распространения трещины скважина не присутствует в модели. В лучшем случае рассматривается переменная нагрузка в трещине, вызванная закачиванием в нее ньютоновской жидкости из точечного источника.

Следует также отметить, что технологическая разработка нетрадиционных пластовых резервуаров сопровождается проектированием новых жидкостей гидроразрыва и различных добавок к ним (волокна, флока и др.), которые значительно изменяют реологическое поведение этих жидкостей. Например, возрастающий интерес к плотным и ультраплотным нетрадиционным пластовым резервуарам с высоким содержанием глины привел к разработке специальных составов с большими долями газа и малыми долями воды. Эти жидкости не ухудшают фильтрационные свойства породы и не вызывают ее физическое разрушение при их закачивании.

В нашей монографии, вышедшей в 2016 году, проведено обобщение разработанных ИВТ СО РАН моделей трещин. В ней собраны результаты, опубликованные в высокорейтинговых журналах, входящих в базы цитирования WoS и Scopus, таких как «Engineering Fracture Mechanics», «International Journal of Fracture» и другие.

5. Зачем нужна модифицированная модель

Как будет располагаться развитая трещина – более или менее известно. Есть термин preferred fracture plane – плоскость предпочтительного распространения трещины. Если известны напряжения (силы) сжимающие породу и их направления (определить их тоже проблема, ей занимаются геофизики), то эту плоскость определить не составляет труда. В современных моделях и симуляторах основное внимание уделяется конфигурации трещины в этой плоскости. Когда же трещина только зарождается от скважины, на положение и направление влияют не только напряжения в породе, но и скважина, и обсадная колонна, и перфорации (дырки в породе), их форма, размеры. И направление трещины в начале процесса не всегда совпадает с плоскостью, в которой будет лежать развитая трещина. Неизбежно возникает искривление трещины, в котором возникает пережатие трещины. Такое пережатие не только может привести к застреванию проппанта, но и вызывает сильное падение давления у скважины. Сейчас в симуляторах это падение давления учитывают с помощью эмпирического коэффициента – скин-фактора, и не очень успешно. Наша модель позволяет более точно предсказывать и описывать этот эффект.

6. Может ли модифицированная модель ГРП применяться непосредственно на промыслах

Изначально ИВТ не был ориентирован на реализацию известных моделей и разработку технологий, а концентрировался на создании их научных основ. Однако таковые основы имеют и непосредственное практическое применение. Например, в начале процесса ГРП для инициирования трещины требуется большее давление, чем для ее поддержания. И определить это давление не всегда просто, а от него зависит количество и тип необходимого оборудования. В мировой литературе представлены приближенные аналитические оценки, были попытки расчетов, но окончательного решения проблемы не найдено. Нами разработана модель инициирования трещины, которая (модель) по конфигурации и напряжениям в породе предсказывает и давление разрушения, и тип образовавшейся трещины, и ее ориентацию.

Эту модель нельзя непосредственно применять в поле. Расчет и настройка занимает некоторое время. Кроме того, требуется точное знание направлений напряжений, их значений, направлений перфораций. Обычно этой информации нет, так как точность измерений не всегда достаточна, из-за высокой стоимости не все напряжения в породе измеряются, направления перфораций нельзя точно установить, так как от места, где фиксируется обсадная колонна, до перфораций несколько километров.

Но модель может сказать, какие ориентации скважины наиболее опасны с точки зрения неудачного ГРП, с точки зрения образования продольной трещины (которая нежелательна при многостадийном ГРП), интервалы давления, необходимого для начала ГРП. Такое исследование, например, мы проводили по заказу компании «Шлюмберже» для месторождения в Омане, которое расположено на глубине более четырех километров и сильно сжато не только в вертикальном, но и в горизонтальном направлении, из-за чего успешных попыток ГРП на нем было меньше половины.

7. Каким видится будущее ГРП в контексте «новой нефти»

Современное состояние традиционных нефтегазовых запасов можно охарактеризовать словом «истощение». Все большее количество добывается из нетрадиционных, трудноизвлекаемых коллекторов. Примерами являются носители так называемой «сланцевой нефти» или, если использовать корректный термин – «нефти низкопроницаемых коллекторов» в США и Канаде, или баженовская свита в России. Последняя, хотя и обладает огромными запасами, но значительно более сложна для освоения. Порода имеет множество особенностей не только по сравнению с традиционными коллекторами, но и с популярными на американском континенте «сланцами». Во-первых, это слабые в сотни и десятки раз, соответственно, проницаемость и пористость. То есть нефти в ней содержится меньше, и перемещается к скважине она хуже. Нефть из таких пород невозможно добывать без использования ГРП.

Во-вторых, породы такого типа характеризуется сильной слоистостью и пластичностью или, скорее, текучестью, высоким поровым давлением, что осложняет и проведение гидроразрыва, и его моделирование. С точки зрения последнего необходимо дополнительно учитывать анизотропность напряжений, материала, пластические эффекты при описании распространения трещины, нелинейность деформаций при оседании трещины на проппант. Замечу, что кроме непосредственно гидроразрыва, освоение этой формации требует решения множества научных и технологических задач, над чем работают ученые в Сколково и в МГУ, в Санкт-Петербурге и в Новосибирске.

Среди них – новые жидкости для разрыва пластов, ПАВы, гидрофобные агенты и добавки.

Компания «ТаграС-РемСервис» представила новые технологические решения для гидроразрыва пласта (ГРП) в сложных геолого-технических условиях.

В компании начали применять новую низковязкую жидкость разрыва пласта с хорошими песконесущими свойствами. Использование данного продукта позволяет:

1. Равномерно размещать расклинивающий агент (проппант) по высоте и длине продуктивного пласта.

2. Контролировать рост трещины в высоту (проведение ГРП на пластах со слабыми барьерами до воды)

3. Снизить повреждение проппантной пачки после полного разрушения геля (сохранить проводимость трещины).

В «ТаграС-РемСервисе» ведутся работы по лабораторному тестированию нового закрепляющего материала – модифицированного песка. Этот продукт помогает сократить движение воды по трещине ГРП, в частности, при операции гидроразрыва пласта на высокообводненном фонде скважин. Песок обладает гидрофобными свойствами, равномерно распределяется по всей высоте трещины и дает возможность снизить вязкость жидкости разрыва.

Новая технология комбинированного кислотно-проппантного ГРП на основе загеленной кислоты поверхностно-активными веществами (ПАВ), сокращает процесс освоения и выхода скважины на рабочий режим, а также снижает риски получения вынужденной остановки процесса. Применение новых химических реагентов исключает попадание полимера в пласт. При этом сокращается количество закачиваемой жидкости в коллектор благодаря тому, что исключается цикл закачки водного полисахаридного геля с проппантом.

«ТаграС-РемСервис» также осваивает технологию гидропескоструйной перфорации с дальнейшим проведением ГРП. Основным преимуществом нового технического решения – это возможность адресного воздействия на пласт без отсечения других интервалов перфорации, т.е. предварительного создания трещины при проведении гидропескоструйной перфорации. Операции можно выполнять и на скважинах с низким качеством цементного камня за колонной. Данная технология позволяет проводить многозонный ГРП в скважинах с горизонтальным окончанием.

С целью регулирования вязкости жидкости ГРП "на лету» в зависимости от фракции и концентрации проппанта, предлагается применять новый реагент антиседиментационную добавку, которая позволяет:

1. Равномерно распределить проппант по вертикали трещины.

2. Увеличить песконесущую способность жидкости гидроразрыва пласта.

3. Снизить загрузку гелеобразователя.

Эти наработки «ТаграС-РемСервис» недавно представил на выставке «Нефть. Газ. Нефтехимия» в рамках Татарстанского нефтегазохимического форума. Со стендом компании ознакомился президент Татарстана Рустам Минниханов.